ΣΧΟΛΕΙΟ ΒΑΘΕΩΣ ΑΥΛΙΔΟΣ

ΣΧΟΛΙΚΟ ΕΤΟΣ: 2010-2011

 

ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ

 

ΘΕΜΑ: ΔΙΑΣΤΗΜΙΚΗ ΤΕΧΝΟΛΟΓΙΑ

 

 

 

 

                            

                             ΔΙΑΣΤΗΜΙΚΗ

                            ΤΕΧΝΟΛΟΓΙΑ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΑΠΟ ΤΙΣ ΜΑΘΗΤΡΙΕΣ: ΕΛΕΝΗ ΤΖΕΛΑ ΚΑΙ ΕΛΕΝΑ ΣΤΥΛΙΑΡΑ

 

 

ΒΑΘΥ, ΦΕΒΡΟΥΑΡΙΟΣ 2011


 

 

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΕΡΙΕΧΟΜΕΝΑ.. 1

ΔΙΑΣΤΗΜΙΚΗ ΤΕΧΝΟΛΟΓΙΑ.. 2

ΤΕΧΝΗΤΟΣ ΔΟΡΥΦΟΡΟΣ.. 3

ΓΕΩΣΥΓΧΡΟΝΗ ΤΡΟΧΙΑ.. 6

ΔΙΑΣΤΗΜΙΚΟ ΛΕΩΦΟΡΕΙΟ.. 6

ΜΕΤΕΩΡΟΛΟΓΙΚΟΣ ΔΟΡΥΦΟΡΟΣ.. 10

ΒΙΒΛΙΟΓΡΑΦΙΑ.. 12

 

 

 

 

 


ΔΙΑΣΤΗΜΙΚΗ ΤΕΧΝΟΛΟΓΙΑ

Διαστημική τεχνολογία ορίζεται ως εκείνος ο τομέας της τεχνολογικής επιστήμης που προέκυψε απο την εξερεύνηση του διαστήματος και τις όποιες νέες εφαρμογές,  εφευρέσεις που δημιουργήθηκαν για το σκοπό αυτό.

  Ιστορική Αναδρομή

Κάπου έξι χιλιάδες χρόνια πριν, όταν το ανθρώπινο μυαλό μισοκοιμόταν ακόμη, Χαλδαίοι ιερείς ανέβαιναν πάνω σε πυργίσκους - παρατηρητήρια για να παρακολουθήσουν τα άστρα, να σημειώσουν τις κινήσεις τους για να συντάξουν με βάση αυτές ημερολόγια που τους χρειάζονταν στην καλλιέργεια της γης και σε διάφορες θρησκευτικές τελετές.

Εκεί που σταμάτησαν οι Βαβυλώνιοι και οι Αιγύπτιοι συνέχισαν οι Έλληνες. Την εποχή εκείνη, τον 6ο δηλαδή π.Χ. αιώνα, το θαυμάσιο αυτόν αιώνα του Βούδα, του Κομφούκιου, του Λάο Τσε και των φιλοσόφων της Ιωνίας και του Πυθαγόρα, αποδεικνύεται ότι η Γη δεν είναι παρά το λίκνο μας μόνο. Με το ταξίδι στη Σελήνη ο άνθρωπος έκανε το πρώτο κιόλας βήμα του έξω από αυτό, εγκαταλείποντάς το, για να μετατρέψει σε λίγο ολόκληρο το ηλιακό σύστημα σε παιδικό του κήπο. Με την καταστροφική έκρηξη της ατομικής βόμβας μέσα στο λίκνο του, στις 16 Ιουλίου 1945, ο άνθρωπος εισερχόταν θορυβωδώς στην εποχή της ατομικής ενέργειας. Το ίδιο, δώδεκα χρόνια αργότερα, στις 4 Οκτωβρίου 1957, με την πρώτη εκτόξευση του Σπούτνικ εισερχόταν ορμητικά σε μια καινούρια εποχή - της αστροναυτικής.

 

 Σπούτνικ

Στη σειρά των Σπούτνικ ανήκει η τιμή ότι άνοιξαν πρώτοι τον δρόμο προς το διάστημα. Με τον Σπούτνικ 1 στις 4 Οκτωβρίου 1957, η κατάκτηση του διαστήματος γινόταν πραγματικότητα. Στις 3 Νοεμβρίου 1957 ο Σπούτνικ 2 με επιβάτη του μια σκυλίτσα, πλούτιζε τα στοιχεία που είχαν συγκεντρωθεί με τον πρόδρομό της Σπούτνικ 1 και στις 15 Μαΐου 1958 ο Σπούτνικ 3 εγκαινίαζε την περίοδο των διαστημικών εργαστηρίων μια και ο ίδιος ήταν τέτοιος.

 

 

ΤΕΧΝΗΤΟΣ ΔΟΡΥΦΟΡΟΣ

Ιστορικά στοιχεία

Η εκτόξευση πυραύλων για λόγους θεάματος αλλά και στρατιωτικούς είχε πραγματοποιηθεί στην Κίνα πριν από αρκετούς αιώνες, αλλά με στοιχειώδη μέσα και χωρίς σοβαρές επιστημονικές γνώσεις.

Η μελέτη του πυραύλου άρχισε στην Ρωσία από τον Κ. Τσιολκόβσκι, από το 1883 μέχρι το 1941. Όμοια, ο Ρ. Γκόνταρντ συνεχίζει τις σχετικές μελέτες και προσπάθειες. Οι πρώτες οργανωμένες προσπάθειες έγιναν στη Ναζιστική Γερμανία με γενναία κρατική χρηματοδότηση και με κύριο υπεύθυνο τον Βέρνερ φον Μπράουν, ο οποίος υπήρξε και ο μεγαλύτερος ειδικός σε θέματα πυραύλων. Το 1942 εκτοξεύτηκε με επιτυχία ο πρώτος πύραυλος V – 2, που έφτασε σε ύψος 95 χλμ. Ακολούθησε μια σειρά πυραύλων του ίδιου τύπου, που χρησιμοποιήθηκε από τους Ναζί για πολεμικές επιχειρήσεις κατά της Μεγάλης Βρετανίας.

Η ιδέα για τη χρήση δορυφόρων σε γεωσύγχρονηγεωστατική) τροχιά γύρω από τη Γη επαναδιατυπώθηκε από τον επιστήμονα και συγγραφέα Άρθουρ Κλαρκ το 1945. Μετά το Β' Παγκόσμιο Πόλεμο και την κατάρρευση της ναζιστικής Γερμανίας, στηριγμένοι σε γερμανική πυραυλική τεχνολογία και το ήδη ειδικευμένο προσωπικό των Γερμανών, αλλά και σε δοκιμές δικών τους επιστημόνων, Σοβιετικοί και Αμερικανοί άρχισαν δοκιμές για την αποστολή δορυφόρων σε τροχιά γύρω από τη Γη. Και οι δύο Μεγάλες Δυνάμεις της εποχής συνεχίζουν τις τελειοποιήσεις κάτω από συνθήκες άκρας μυστικότητας, για την κατασκευή διηπειρωτικών και άλλων πυραύλων.

Με την ευκαιρία του Διεθνούς Γεωφυσικού Έτους του 1957 εκτοξεύτηκε ο πρώτος τεχνητός δορυφόρος της ιστορίας, ο Σοβιετικός Σπούτνικ 1. Λίγο αργότερα ακολούθησε και ο αμερικανικός Εξπλόρερ 1. Έτσι, στη δεκαετία του 1950, οι στρατιωτικοί πύραυλοι έχουν τελειοποιηθεί και χρησιμοποιούνται ευρύτατα στα οπλοστάσια πολλών κρατών.

Κατά την ίδια εποχή άρχισαν να χρησιμοποιούνται «ειδικοί» πύραυλοι και για επιστημονικούς σκοπούς. Έτσι, κατά τον προγραμματισμό του Διεθνούς Γεωφυσικού Έτους (ΔΓΕ), στα 1957 – 1958, αποφασίστηκε να εκτοξευθούν και τεχνητοί δορυφόροι για τη μελέτη ενός ευρύτατου πεδίου, που ενδιέφερε άμεσα τους γεωφυσικούς, τους γεωλόγους, τους σεισμολόγους, τους αστρονόμους κ.ά., από 66 χώρες. Κατά τη διάρκεια του ΔΓΕ και συγκεκριμένα στις 4 Οκτωβρίου 1957 εκτοξεύτηκε ο πρώτος τεχνητός δορυφόρος της Γης από την ΕΣΣΔ, ο Σπούτνικ. Η ημέρα αυτή είναι η αρχή της εποχής του διαστήματος.

 

Εκτόξευση δορυφόρου

Η αποβολή ενός δορυφόρου αρχίζει πάντοτε με την εκτόξευση του με τον πύραυλο – φορέα. Οι πολλοί μικροί δορυφόροι και μάλιστα κατά τα πρώτα εγχειρήματα, εκτοξεύτηκαν με απλό πύραυλο, από εκείνους που ήδη χρησιμοποιούνται για στρατιωτικούς σκοπούς, όπως οι «Άτλας» και «Κένταυρος». Όταν οι απαιτήσεις έγιναν μεγαλύτερες, είτε γιατί το ύψος των τροχιών ήταν μεγαλύτερο είτε γιατί το βάρος ήταν πολύ μεγαλύτερο, τότε, άρχισαν να χρησιμοποιούνται συνδυασμένοι πύραυλοι στην αρχή και αργότερα οι πύραυλοι πολλών ορόφων, όπως αναφέρονται στην αρχή.

Επειδή η Γη περιφέρεται γύρω από τον άξονα της από τη Δύση  προς  την Ανατολή, η εκτόξευση γίνεται πάντοτε κατά την ίδια κατεύθυνση με σκοπό να γίνει αντικείμενο εκμετάλλευσης και η ταχύτητα περιστροφής της Γης. Και βέβαια, το σημείο εκτόξευσης πρέπει να βρίσκεται όσο το δυνατόν πιο κοντά στον Ισημερινό, ώστε να προστεθεί και η αντίστοιχη ταχύτητα της Γης, γιατί, αν και η αρχική διεύθυνση του πυραύλου είναι κατακόρυφη ως προς τον τόπο εκτόξευσης, η κίνηση του ως προς το κέντρο της Γης είναι σύνθετη, με μια συνιστώσα κατακόρυφη και μια οριζόντια, που είναι η κίνηση της Γης. Όταν ο πύραυλος φτάσει στο προϋπολογισμένο ύψος και με την προϋπολογισμένη ταχύτητα, παίρνει κλίση προς Ανατολάς και αρχίζει την κυκλική ελλειπτική τροχιά του. Τότε, με ειδικούς μικρούς πυραύλους, ο δορυφόρος αποχωρίζεται από τον τελευταίο όροφο του πυραύλου και αρχίζει την αποστολή του. Αν χρειάζεται διόρθωση ή οποιαδήποτε μεταβολή, η τροχιά του δορυφόρου, επιφέρεται με ειδικούς μικρούς πυραύλους που πυροδοτούνται με εντολές που δίνονται με ραδιοσήματα.

Όλες οι φάσεις της εκτόξευσης και όλα τα σχετικά στοιχεία έχουν προϋπολογιστεί και εξαρτώνται από τα συστήματα που χρησιμοποιούνται σε κάθε αποστολή, όπως ο τύπος του πυραύλου – φορέα, ο τύπος του δορυφόρου, η αντοχή των οργάνων και των συσκευών τους στις μεγάλες επιταχύνσεις κτλ. Ειδικοί ηλεκτρονικοί υπολογιστές, εγκατεστημένοι στο κέντρο παρακολούθησης, συνδέονται με κεραίες εκπομπής και λήψης ραδιοσημάτων, ώστε να παρακολουθούν τον πύραυλο και το δορυφόρο σε κάθε στιγμή και να κάνουν αυτόματα τις απαιτούμενες διορθώσεις. Επιπλέον, ένα επιτελείο από ειδικούς επιστήμονες και τεχνικούς βρίσκεται σε επιφυλακή ώστε να αντιμετωπίσουν οποιαδήποτε απρόοπτη εξέλιξη που θα μπορούσε να παρουσιαστεί, παρά το λεπτομερέστατο προγραμματισμό των ηλεκτρονικών υπολογιστών. Η δυσκολότερη φάση του εγχειρήματος είναι η τελική τοποθέτηση του δορυφόρου στην τροχιά του, η οποία διαρκεί μερικά δευτερόλεπτα μόνο. Κατά τη διάρκεια της, συνήθως, προκύπτουν τόσα προβλήματα, ώστε για να διατυπωθούν και να λυθούν χρειάζονται 10 μαθηματικοί, οι οποίοι θα εργάζονται επί 10 χρόνια. Και όμως, με τα αυτόματα συστήματα και τους ηλεκτρονικούς υπολογιστές, που χρησιμοποιούνται, όχι μόνο αναγνωρίζονται, διατυπώνονται και λύνονται τα προβλήματα αυτά, αλλά και οι λύσεις τους στέλνονται στο σκάφος και εφαρμόζονται σε λίγα μόλις δευτερόλεπτα. Είναι φανερό, ότι δε θα μπορούσε να γίνει εκτόξευση και επιτυχής τοποθέτηση σε τροχιά κανενός δορυφόρου, αν δεν είχαν αναπτυχθεί τα αυτόματα συστήματα παρακολούθησης και οι ηλεκτρονικοί υπολογιστές.

 Περιγραφή των τμημάτων ενός δορυφόρου

Ανεξάρτητα από τη χρήση τους, οι τεχνητοί δορυφόροι έχουν ορισμένα στοιχεία όλων των δορυφόρων που είναι τα ίδια.

 Έλεγχος τοποθέτησης

Για να σταθεροποιηθεί ένας δορυφόρος, έχει ένα σύστημα που τον κρατά ομοιόμορφα εντός της τροχιάς του, καθώς οι μετρήσεις και οι εικόνες ενός δορυφόρου θα είναι ανακριβείς και συγκεχυμένες εάν αυτός δεν είναι σταθερός. Για να διατηρούνται σταθεροί, οι δορυφόροι χρησιμοποιούν συχνά περιστροφική ή γυροσκοπική κίνηση.

 Σώμα δορυφόρου

Το σώμα ενός δορυφόρου, επίσης γνωστό ως λεωφορείο του δορυφόρου, περιέχει όλο τον επιστημονικό εξοπλισμό και άλλα απαραίτητα συστατικά του δορυφόρου. Οι δορυφόροι συνδυάζουν πολλά διαφορετικά υλικά που αποτελούν τα συστατικά μέρη τους. Δεδομένου ότι οι δορυφόροι είναι ουσιαστικά κομμάτια του επιστημονικού ή εξοπλισμού επικοινωνιών που πρέπει να πάει στο διάστημα, οι μηχανικοί πρέπει να σχεδιάσουν ένα λεωφορείο που θα μεταφέρει τον εξοπλισμό ακίνδυνα στο διάστημα.

Υπάρχουν διάφορα σημεία που οι μηχανικοί πρέπει να προσέξουν κατά την επιλογή των υλικών για το λεωφορείο του δορυφόρου. Μεταξύ αυτών είναι:

·        Εξωτερικό στρώμα: προστατεύει το δορυφόρο από τις συγκρούσεις με μικρομετεωρίτες ή άλλα μόρια που αιωρούνται στο διάστημα

·        Αντιραδιενεργή προστασία: προστασία του δορυφόρου από την ακτινοβολία του ήλιου

·        Θερμική κάλυψη: χρησιμοποίηση της θερμικής κάλυψης για να διατηρεί ο δορυφόρος την ιδανική θερμοκρασία που χρειάζονται τα όργανα για να λειτουργήσουν ομαλά

·        Σύστημα απομάκρυνσης της θερμότητας μακριά από τα ζωτικής σημασίας όργανα του δορυφόρου

·        Δομική υποστήριξη

·        Σύνδεση των υλικών

Γενικά, όσο μικρότερος είναι ένας δορυφόρος, τόσο καλύτερος είναι. Κατά την επιλογή των υλικών για το κυρίως σώμα του, συνήθως λαμβάνονται υπόψη και οι ακόλουθοι παράγοντες: κόστος, βάρος, μακροζωία (πόσο καιρό θα αντέξει το υλικό), και εάν το υλικό έχει αποδειχθεί λειτουργικό σε άλλους δορυφόρους πριν.

 Επικοινωνία

Όλοι οι δορυφόροι πρέπει να έχουν μερικούς τρόπους επικοινωνίας με τη γη, καθώς ο δορυφόρος πρέπει να είναι σε θέση να λαμβάνει οδηγίες και να διαβιβάζει πληροφορίες που συλλέγει, αλλά και να μπορεί να αναμεταδώσει τις πληροφορίες που στέλνονται σε αυτόν σε μια άλλη περιοχή στη γη. Αυτό γίνεται γενικά χρησιμοποιώντας κάποιο τύπο κεραίας.

Οι κεραίες είναι απλό κομμάτι του εξοπλισμού, που επιτρέπει τη μετάδοση και την υποδοχή των ραδιοσημάτων. Δεδομένου ότι οι πληροφορίες μεταδίδονται χρησιμοποιώντας τα ραδιοκύματα, τα οποία κινούνται με την ταχύτητα του φωτός, αυτή η μέθοδος επιτρέπει πολύ γρήγορες επικοινωνίες, με μια πολύ μικρή χρονική καθυστέρηση.

 Εσωτερικός υπολογιστής

Όλοι οι δορυφόροι έχουν υπολογιστή, ο οποίος επεξεργάζεται τις πληροφορίες που συλλέγονται από το δορυφόρο, και ελέγχει τα διάφορα συστήματά του. Το δορυφορικό υποσύστημα που εκπληρώνει αυτόν τον ρόλο καλείται καταδίωξη και έλεγχος τηλεμετρίας (TT&C). TT&C είναι ο εγκέφαλος του δορυφόρου και του λειτουργικού συστήματός του. Καταγράφει κάθε δραστηριότητα του δορυφόρου, λαμβάνει τις πληροφορίες από τον επίγειο σταθμό, και φροντίζει οποιαδήποτε γενική συντήρηση που πρέπει να κάνει ο δορυφόρος.

Ενέργεια

Κάθε δορυφόρος χρειάζεται μια πηγή ενέργειας, η οποία συνήθως είναι:

·        Ηλιακοί συλλέκτες

·        Μπαταρίες

·        Πυρηνική ενέργεια

·        Γεννήτριες θερμότητας

 

 

ΓΕΩΣΥΓΧΡΟΝΗ ΤΡΟΧΙΑ

Γεωσύγχρονη ή γεωστατική τροχιά ονομάζεται η τροχιά ενός τεχνητού δορυφόρου γύρω από τη γη, κατά την οποία ο δορυφόρος κινείται πάνω από τον ισημερινό, σε ύψος 35.786 χλμ (22.236 μιλίων) και με τέτοια ταχύτητα (11.040χλμ/ω), ώστε από τη γη να φαίνεται σταθερός, καθώς βρίσκεται πάντοτε πάνω από το ίδιο σημείο της επιφάνειας της γης.

 

 

ΔΙΑΣΤΗΜΙΚΟ ΛΕΩΦΟΡΕΙΟ

Το διαστημικό λεωφορείο Atlantis εκτοξεύεται ξεκινώντας την αποστολή STS-71.

Το Διαστημικό Λεωφορείο της NASA, που επίσημα λέγεται "Διαστημικό Σύστημα Μεταφορών" (Space Transportation System-STS), είναι ο τρέχων φορέας εκτόξευσης πληρωμάτων και φορτίου των ΗΠΑ. Έχουν κατασκευαστεί επτά αμερικάνικα διαστημικά λεωφορεία, από τα οποία τρία παραμένουν ενεργά (Ντισκάβερι, Ατλαντίς, Εντέβορ), δυο έχουν καταστραφεί σε ατυχήματα, το Challenger και το Columbia, το 1986 και 2003 αντίστοιχα, ενώ ένα έχει χρησιμοποιηθεί για δοκιμαστικές πτήσεις στη γήινη ατμόσφαιρα κι όχι για διαστημικές αποστολές, το Space Shuttle Enterprise (το πρώτο διαστημικό λεωφορείο της ΝΑΣΑ), και τέλος το Space Shuttle Pathfinder, το οποίο αποτελεί εξομοιωτή διαστημικού λεωφορείου.

Το διαστημικό λεωφορείο εκτοξεύεται κάθετα, φέρνοντας συνήθως πέντε έως επτά αστροναύτες (αν και έχουν μεταφερθεί και οκτώ) και μέχρι περίπου 22.700 κιλά (50.000 λίβρες) ωφέλιμου φορτίου σε χαμηλή γήινη τροχιά. Όταν η αποστολή του τελειώνει, επιστρέφει μέσα στην γήινη ατμόσφαιρα, πετά σαν ανεμοπλάνο και κάνει οριζόντια προσγείωση όπως και ένα συνηθισμένο αεροσκάφος.

 

Το διαστημικό λεωφορείο είναι το πρώτο τροχιακό διαστημικό σκάφος που σχεδιάστηκε με μερική ικανότητα επαναχρησιμοποίησης. Είναι επίσης το πρώτο επανδρωμένο διαστημικό σκάφος με φτερά που έχει επιτύχει να εκτοξευθεί σε τροχιά και να προσγειωθεί. Μεταφέρει μεγάλα ωφέλιμα φορτία σε διάφορες τροχιές, χρησιμεύει σαν πορθμείο για την μεταφορά πληρωμάτων προς και από το Διεθνή Διαστημικό Σταθμό (ISS), και εκτελεί αποστολές συντήρησης και επισκευών.

Το όχημα μπορεί επίσης να ανακτήσει δορυφόρους και άλλα ωφέλιμα φορτία από την τροχιά τους και να τα επιστρέψει στη γη, αλλά αυτή η ικανότητα δεν έχει χρησιμοποιηθεί συχνά. Εντούτοις, αυτή η ικανότητα χρησιμοποιείται για να επιστρέψει μεγάλα φορτία στη γη από το διεθνή [CTI1] διαστημικό σταθμό, δεδομένου ότι το ρωσικό σκάφος Σογιούζ έχει περιορισμένη ικανότητα επιστροφής φορτίων. Κάθε διαστημικό λεωφορείο σχεδιάστηκε με προβλεπόμενη διάρκεια ζωής 100 εκτοξεύσεων ή 10 ετών λειτουργικής ζωής.

Η NASA ανακοίνωσε το 2004 ότι το διαστημικό λεωφορείο θα αποσυρθεί το 2010 και θα αντικατασταθεί από το όχημα Orion και τον πυραυλικό φορέα Άρης Ι.

Το πρόγραμμα άρχισε προς το τέλος της δεκαετίας του '60 και έχει μονοπωλήσει το πρόγραμμα επανδρωμένων πτήσεων της NASA από τα τέλη της δεκαετίας του '70, οπότε και τερματίστηκε το Πρόγραμμα Απόλλο για την εξερεύνηση της Σελήνης. Η πρώτη εκτόξευση έγινε στις 12 Απριλίου 1981 με το Columbia. Σύμφωνα με το "όραμα για τη διαστημική εξερεύνηση", το νέο πρόγραμμα της NASA για την επιστροφή στη Σελήνη και την εξερεύνηση του Άρη, η χρήση του διαστημικού λεωφορείου θα στραφεί στην ολοκλήρωση της συναρμολόγησης του ISS ως το 2010, και μετά θα αντικατασταθεί.

 

 

Περιγραφή

Το διαστημικό λεωφορείο είναι ένα μερικώς επαναχρησιμοποιούμενο σύστημα εκτόξευσης που αποτελείται από τρία κύρια συγκροτήματα: το επαναχρησιμοποιήσιμο τροχιακό όχημα (Orbiter Vehicle-OV), την εξωτερική δεξαμενή καυσίμων(External Tank-ET), το μόνο αναλώσιμο τμήμα του συστήματος, και δύο επαναχρησιμοποιήσιμους πυραύλους στερεών καυσίμων (Solid Rocket Boosters-SRBs). Η δεξαμενή και οι δυο πύραυλοι απορρίπτονται στη θάλασσα κατά τη διάρκεια της ανάβασης. Μόνο το όχημα μπαίνει σε τροχιά. Το όχημα εκτοξεύεται κάθετα όπως ένας συμβατικός πύραυλος, προσγειώνεται οριζόντια όπως ένα πολιτικό αεροπλάνο, και μετά ανανεώνεται και επισκευάζεται για την επαναχρησιμοποίηση.

Τροχιακό όχημα

Το τροχιακό όχημα μοιάζει με ένα αεροπλάνο με διπλή πτέρυγα δέλτα. Η καμπίνα του πληρώματος αποτελείται από τρία επίπεδα: το επίπεδο πτήσης, το μέσο επίπεδο, και το επίπεδο γενικής χρήσης. Στα υψηλότερα καθίσματα του επιπέδου πτήσης κάθεται ο διοικητής και πιλότος, και οι δύο ειδικοί της αποστολής πίσω τους. Το μέσο επίπεδο έχει τρία καθίσματα για τα υπόλοιπα μέλη του πληρώματος. Η αποθήκη, η τουαλέτα, οι θέσεις ύπνου, τα ντουλάπια αποθήκευσης, και η δευτερεύουσα πόρτα για την είσοδο/έξοδο από το όχημα βρίσκονται επίσης εκεί, όπως επίσης και ο θάλαμος αποσυμπίεσης. Ο θάλαμος αποσυμπίεσης έχει άλλη μια πόρτα που οδηγεί στην αποβάθρα ωφέλιμων φορτίων. Επιτρέπει σε δύο αστροναύτες, που φορούν τις στολές εξωοχηματικής δραστηριότητας να εξισορροπήσουν την πίεση πριν και μετά από έναν διαστημικό περίπατο.

Το τροχιακό όχημα έχει μεγάλη αποβάθρα ωφέλιμων φορτίων, που καταλαμβάνει το μεγαλύτερο μέρος της ατράκτου (18*16 μέτρα). Οι πόρτες της αποβάθρας των ωφέλιμων φορτίων φέρουν απαγωγούς θερμότητας στις εσωτερικές επιφάνειές τους, και έτσι κρατιούνται ανοικτές ενώ το διαστημικό λεωφορείο είναι σε τροχιά, βοηθώντας στον έλεγχο της θερμότητας. Αυτός βοηθείται επίσης με τη ρύθμιση του προσανατολισμού του οχήματος σε σχέση με τη γη και τον ήλιο. Μέσα στην αποβάθρα ωφέλιμου φορτίου είναι ο ρομποτικός βραχίονας, γνωστός και ως Canadarm, που χρησιμοποιείται για την είσοδο και έξοδο φορτίων από την άτρακτο. Μέχρι την απώλεια του Κολούμπια, το Canadarm συμπεριλαμβανόταν στον εξοπλισμό του διαστημικού λεωφορείο μόνο στις αποστολές που επρόκειτο να απαιτηθεί η χρήση του. Δεδομένου ότι ο βραχίονας είναι ένα κρίσιμο μέρος των διαδικασιών επιθεώρησης του συστήματος θερμικής προστασίας που απαιτούνται τώρα για τις πτήσεις των διαστημικών λεωφορείων, θα περιληφθεί πιθανώς σε όλες τις μελλοντικές πτήσεις.

Οι κύριες μηχανές του διαστημικού λεωφορείου (Space Shuttle Main Engines-SSMEs) τοποθετούνται στο πίσω μέρος της ατράκτου σε τριγωνική διάταξη. Οι τρεις μηχανές μπορούν να γυρίσουν 10,5 μοίρες πάνω-κάτω και 8,5 μοίρες από τη μία πλευρά στην άλλη κατά τη διάρκεια της ανόδου για να αλλάξουν την κατεύθυνση της ώθησής τους και μαζί και την πορεία του διαστημικού λεωφορείου.

Το τροχιακό σύστημα ελιγμών (Orbital Maneuvering System-OMS) χρησιμοποιείται για τυς ελιγμούς που κάνει το διαστημικό λεωφορείο όταν βρίσκεται σε τροχιά, συμπεριλαμβανομένης της εισαγωγής σε τροχιά, ομαλοποίησης της τροχιάς, μεταφοράς σε ψηλότερη ή χαμηλότερη τροχιά, ραντεβού σε τροχιά, και ακύρωσης-επανεισόδου.

Το σύστημα ελέγχου αντίδρασης (Reaction Control System-RCS) παρέχει τον έλεγχο του προσανατολισμού και τις στροφές κατά μήκος των αξόνων του σκάφους τόσο σε τροχιά όσο και κατά τη διάρκεια των φάσεων πτήσης, εισαγωγής σε τροχιά και επανεισόδου.

Το σύστημα θερμικής προστασίας (Thermal Protection System-TPS) καλύπτει το εξωτερικό του οχήματος, για προστασία του τόσο από το κρύο των -121 °C (-250 °F) του διαστήματος όσο και από την θερμότητα των 1649 °C(3000 °F) της επανεισόδου.

Η κυρίως δομή του τροχιακού οχήματος αποτελείται κατά βάση από κράμα αλουμινίου, αν και η δομή του συγκροτήματος των μηχανών είναι από τιτάνιο.

 Εξωτερική δεξαμένη

Το Columbia πριν την πρώτη εκτόξευση του στις 12 Απριλίου 1981

Η εξωτερική δεξαμενή (External Tank-ET) περιέχει 2.025 εκατομμύρια λίτρα (535.000 γαλόνια) υγρού υδρογόνου και υγρού οξυγόνου, τα οποία προωθούνται προς καύση στις κύριες μηχανές και αποτελούν τα καύσιμα του διαστημικού λεωφορείου. Απορρίπτεται 8,5 λεπτά μετά την εκτόξευση, σε ύψος 60 ναυτικών μιλίων (111 χλμ) και έπειτα καίγεται κατά την επανείσοδό της στην ατμόσφαιρα. Η δεξαμενή κατασκευάζεται συνήθως από κράμα αλουμινίου-λίθιου και τα τοιχώματά της είναι περίπου 1/8 της ίντσας παχιά.

Στις πρώτες δύο αποστολές των διαστημικών λεωφορείων η εξωτερική δεξαμενή ήταν βαμμένη άσπρη για λόγους θερμικής προστασίας. Στις επόμενες αποστολές η άσπρη βαφή καταργήθηκε και το χρώμα της είναι πλέον το φυσικό κεραμιδί του αφρού θερμικής προστασίας που την καλύπτει. Η κατάργηση της βαφής της δεξαμενής αύξησε επίσης την ικανότητα μεταφοράς ωφέλιμου φορτίου του διαστημικού λεωφορείου κατά περίπου 273 κιλά, όσο δηλαδή ήταν και το βάρος της μπογιάς που χρησιμοποιούνταν στη δεξαμενή.

Η εξωτερική δεξαμενή υπέστη εκτενείς μετατροπές μετά το ατύχημα του Κολούμπια τον Φεβρουάριο του 2003, καθώς η αιτία για την καταστροφή ήταν ένα κομμάτι του μονωτικού αφρού που αποκολλήθηκε από τη δεξαμενή και χτύπησε το ευαίσθητο κάτω μέρος του οχήματος, καταστρέφοντας τη μόνωση που θα το προφύλασσε κατά την επανείσοδό του. Έτσι, μεταξύ άλλων, στην εξωτερική δεξαμενή τοποθετήθηκαν θερμαντικά στοιχεία, που δεν επιτρέπουν το σχηματισμό πάγου, και αφαιρέθηκε ένας εξωτερικός σωλήνας καλωδίωσης.

 Πύραυλοι στερεών καυσίμων

Οι δύο πύραυλοι στερεών καυσίμων (Solid Rocket Boosters-SRBs) είναι οι μεγαλύτεροι και πιο ισχυροί πύραυλοι αυτού του τύπου που χρησιμοποιήθηκαν ποτέ σε πτήση, και ο κινητήρας τους ο πιο ισχυρός που έχει χρησιμοποιηθεί ποτέ. Παρέχουν περίπου το 83% της ώθησης του οχήματος στην εκτόξευση και κατά τη διάρκεια των πρώτων σταδίων της ανόδου. Απορρίπτονται δύο λεπτά μετά μετά την εκτόξευση σε ένα ύψος περίπου 150.000 ποδών (45,7 χλμ), κατόπιν ανοίγουν τα αλεξίπτωτά τους και προσθαλασώνονται στον ωκεανό. Καθώς έχουν την ικανότητα να επιπλέουν, ανακτώνται και ετοιμάζονται για την επόμενη χρήση τους. Το εξωτερικό τους περίβλημα αποτελείται από χάλυβα με πάχος περίπου 1/2 ίντσα (1,27 εκατοστά).

 

 

 Προσγείωση

Οι εξωτερικές επιφάνειες του σκάφους φτάνουν έως και τους 1.500οC κατά τη διάρκεια της επανεισόδου

Το σκάφος ξεκινά την επανείσοδό του στην ατμόσφαιρα πυροδοτώντας τους κινητήρες OMS σε διεύθυνση αντίθετη με την τροχιακή του κίνηση για περίπου τρία λεπτά. Η επιβράδυνση από την πυροδότηση μεταφέρει το περίγειο της τροχιάς μέσα στην ατμόσφαιρα. Η πυροδότηση των κινητήρων γίνεται περίπου στην αντίθετη πλευρά του πλανήτη από την τοποθεσία προσγείωσης. Από αυτό το σημείο και μετά η όλη διαδικασία της επανεισόδου, εκτός από την έκταση του συστήματος προσγείωσης και την ανάπτυξη των αισθητήρων αέρα, ελέγχεται από τους υπολογιστές αιρα σε ύψος περίπου 120 χιλιομέτρων, με ταχύτητα 25 Mach (8,2 km/s). Με τη χρήση του συστήματος RCS και των επιφανειών ελέγχου, το σκάφος πετά με το ρύγχος υψωμένο σε κλίση 40 μοιρών με την οριζόντιο, κάτι που εξασφαλίζει τη μέγιστη επιβράδυνση σε συνδυασμό με την ελάχιστη θέρμανση από την τριβή με την ατμόσφαιρα. Μετά από αυτή τη φάση, το σκάφος μειώνει κι άλλο την ταχύτητά του εκτελώντας ελιγμούς σχήματος S πριν την τελική προσέγγιση.

H πρώτη προσγείωση του διαστημικού λεωφορείου Columbia στις 14 Απριλίου 1981

Στην κατώτερη ατμόσφαιρα το σκάφος πετά ουσιαστικά σαν ανεμόπτερο, εκτός του πολύ μεγαλύτερου ρυθμού καθόδου (3 χιλιόμετρα το λεπτό). Όταν πέσει η ταχύτητά του περίπου στα 3 Mach αναπτύσσονται δυο αισθητήρες του αέρα κάτω από το ρύγχος, που συλλέγουν στοιχεία για την κινηση του σκάφους μέσα στην ατμόσφαιρα.

Το όχημα ξεκινά τη φάση προσέγγισης και προσγείωσης σε ύψος 10.000 ποδών (περίπου τριών χιλιομέτρων), σε απόσταση περίπου δώδεκα χιλιομέτρων από το διάδρομο προσγείωσης. Η ταχύτητα μειώνεται κι άλλο με τη χρήση αερόφρενων (δυο επιφανειών που καλύπτουν το πηδάλιο και αναπτύσσονται προς τα έξω), από 682 km/h σε περίπου 350 km/h την ώρα της προσγείωσης (η αντίστοιχη ταχύτητα για τα επιβατικά τζετ είναι 250 km/h). Το σύστημα προσγείωσης αναπτύσσεται όταν το σκάφος πετά με ταχύτητα 343 χλμ/ώρα. Για να μειωθεί κι άλλο η ταχύτητα, τη στιγμή που το ρινιαίο σκέλος του συστήματος προσγείωσης αγγίξει το διάδρομο, στην ουρά ανοίγει ένα αλεξίπτωτο 12 μέτρων, που απορρίπτεται όταν η ταχύτητα πέσει στα 111 km/h. Το αλεξίπτωτο προστέθηκε λόγω της συχνής καταστροφής των ελαστικών του οχήματος, που πριν προστεθεί το αλεξίπτωτο δέχονταν το μεγαλύτερο μέρος της δύναμης από την επιβράδυνση.

Μετά την προσγείωση το σκάφος παραμένει απομονωμένο στο διάδρομο για αρκετή ώρα, επειδή πρέπει να διαλυθούν οι επικίνδυνοι ατμοί υδραζίνης (που χρησιμοποιείται σαν πρωθητικό στους κινητήρες ελέχγου προσανατολισμού) και η άτρακτος να κρυώσει πριν μπορέσει κανείς να το πλησιάσει.

Η προσγείωση του διαστημικού λεωφορείου είναι αρκετά ευαίσθητη διαδικασία, καθώς το σκάφος δεν χρησιμοποιεί κινητήρες κι έτσι έχει μόνο μια ευκαιρία για προσέγγιση/προσγείωση.

Το διαστημικό λεωφορείο κατά κανόνα προσγειώνεται στο Διαστημικό Κέντρο Κέννεντυ. Αν οι συνθήκες δεν επιτρέπουν προσγείωση εκεί, μπορεί να προσγειωθεί και στην Αεροπορική Βάση Έντουαρντς στην Καλιφόρνια. Σ' αυτή την περίπτωση, προκειμένου να επιστρέψει για συντήρηση και προετοιμασία στη Φλόριντα, το σκάφος τοποθετείται πάνω σε ένα ειδικά μετασκευασμένο Boeing 747. Αυτό το ταξίδι της επιστροφής κοστίζει στη NASA ένα εκατομμύριο δολάρια επιπλέον στον προϋπολογισμό της αποστολής.

 του σκάφους. Παρόλα αυτά ολόκληρη η διαδικασία μπορεί να εκτελεστεί (όπως και έχει γίνει για μια και μοναδική φορά) χειροκίνητα. Η τελική φάση της προσγείωσης μπορεί να γίνει με αυτόματο πιλότο, συνήθως όμως γίνεται χειροκίνητα.

Το Εντέβορ στη φάση της προσγείωσης και ενώ έχει ανοίξει το αλεξίπτωτο

Το όχημα αρχίζει ουσιαστικά να μπαίνει στην ατμόσφαιρα.

 

ΜΕΤΕΩΡΟΛΟΓΙΚΟΣ ΔΟΡΥΦΟΡΟΣ

 

 

Μετεωρολογικοί δορυφόροι ή δορυφόροι καιρού ονομάζονται ειδικές διαστημικές μηχανές, σύγχρονα επιτεύγματα της διαστημικής, που εκτοξεύονται με διαστημικά οχήματα και θέτονται στη συνέχεια σε τροχιά γύρω από τη Γη, για την παρακολούθηση και πρόβλεψη των γήινων καιρικών φαινομένων.

Γενικά

Στη σύγχρονη εποχή των διαστημικών ερευνών πράγματι λέξεις όπως "πύραυλος", "διαστημόπλοιο", "τεχνητός δορυφόρος" θεωρούνται πλέον συνήθεις και κοινότυπες αφού αποτελούν πλέον μέρος της καθημερινής ζωής. Η επιστήμη όμως που θεωρείται πως έχει ευεργετηθεί περισσότερο από κάθε άλλη από αυτή την δραστηριότητα είναι αναμφίβολα η Μετεωρολογία. Οι πληροφορίες που στέλνουν οι μετεωρολογικοί δορυφόροι ειδικά από το διάστημα είναι περισσότερο ικανές να προβλέψουν την εξέλιξη των καιρικών φαινομένων σε ένα τόπο για τις επόμενες 4, 5 ή και 10 ημέρες αυξάνοντας έτσι το εύρος της πρόγνωσης.

Τέτοιου είδους δυνατότητες θεωρούνται ιδιαίτερα σημαντικές στην ανθρώπινη διαβίωση. Δεν θα πρέπει να λησμονείται ότι κύματα ψύχους, ή πλημμυρών, τυφώνες και άλλα φαινόμενα που κυριολεκτικά παραλύουν συχνά ολόκληρες ηπείρους θα μπορούν να είναι λιγότερο καταστροφικά αν υπάρχει έγκαιρη πρόβλεψη. Έτσι η περαιτέρω ανάπτυξη των μετεωρολογικών παρατηρήσεων, μέσω των δορυφόρων αυτών, καθιστούν συνέχεια περισσότερο μακροπρόθεσμη την πρόγνωση του καιρού.

 Η Αρχή

Πρώτος τεχνητός δορυφόρος που εκτοξεύθηκε ειδικά για ανάγκες μετεωρολογίας ήταν το 1960 που έφερε το όνομα TIROS-1 ο οποίος και έστειλε στη Γη περίπου 23.000 φωτογραφίες. Από τότε εκατομμύρια άλλες φωτογραφίες έχουν σταλεί στη Γη από τους μετεωρολογικούς δορυφόρους που εκτοξεύθηκαν στη συνέχεια και τοποθετήθηκαν σε τροχιές γύρω από τη Γη. Οι δορυφόροι αυτοί θέτονται σε τροχιές περιστροφής με την ίδια ταχύτητα περιστροφής της Γης ουτως ώστε να βρίσκονται συνέχεια πάνω από το ίδιο σημείο του γήινου ισημερινού. Οι δορυφόροι αυτοί είναι διαφόρων εθνικοτήτων που σχηματίζουν μεταξύ τους ένα δίκτυο μετεωρολογικής παρατήρησης και πληροφόρησης για τη σφαιρική κατανομή των καιρικών φαινομένων του πλανήτη Γη. Το σύστημα αυτό βρίσκεται σε συνεχή λειτουργία όλο το 24ωρο, σε διάφορα μήκη κύματος, παρέχοντας έτσι πληροφορίες μέρα και νύκτα.

Νεότερες σειρές μετεωρολογικών δορυφόρων περισσότερο εξελιγμένοι άνοιξαν πραγματικά νέους ορίζοντες στους μετεωρολόγους. Όπως σημειώνει χαρακτηριστικά σε διαλέξεις του ο διακεκριμένος επιστήμονας και διευθυντής του Ευγενιδείου Πλανηταρίου, Διονύσης Σιμόπουλος "οι σύγχρονοι μετεωρολογικοί δορυφόροι ξεπερνούν κάθε προηγούμενο αφού οι δυνατότητές τους σε σχέση μ΄ εκείνον του 1960 είναι όσο το ακόντιο με το πολυβόλο"!

 Σύγχρονο δίκτυο

Σήμερα ένας ολόκληρος στόλος από σύγρονους μετωρολογικούς δορυφόρους λειτουργεί κάτω από την επίβλεψη της Ευρώπης, των ΗΠΑ, της Ρωσίας, της Κίνας, της Ιαπωνίας αλλά και της Ινδίας. Συγκεκριμένα με ευθύνη Χωρών:.

1. Ευρώπης, κινούνται ήδη τρεις παλαιότεροι δορυφόροι οι Μετεοστάτ 5, 6 και 7, ένας νεότερος ο MSG-1 και ο ακόμα ποιο εξελιγμένος, ο "Μέτοπ 1" (Metop-1) που παρέχουν πολύ ανώτερης ποιότητας παρατηρήσεις. Σύνολο 5.

2. ΗΠΑ, λειτουργού σήμερα οι GOES-8, 10, 11 και 12, και οι NOAA-12, 15 και 16. Σύνολο 7.

3. Ρωσίας, λειτουργούν οι περιορισμένοι δυνατοτήτων (λόγω τροχιάς) Meteor-2 και 3, ο νεότερος Meteor-3M-N1 και ο τελευταίος, πλέον σύγχρονος, GOMS-N2. Σύνολο 4.

4. Κίνας, υπεύθυνη για την παρακολούθηση των παρατηρήσεων των FY-2A, FY-2B, FY-1C, του νεότερου FY-1D και του πλέον σύγχρονου FY-3A. Σύνολο 5.

5. Ινδίας, λειτουργούν οι InSat-1D, InSat-2B ο νεότερος InSat-3A και οι τελευταίοι νεας γενιάς MetSat-1R και InSat-3D. Σύνολο 5, και τέλος η

6. Ιαπωνία, που έχει την ευθύνη του GMS-5 και των δύο τελευταίας γενιάς δορυφόρων MTSAT-1R και MTSAT-2. Σύνολο 3.

 Εξοπλισμός δορυφόρων

Οι τελευταίας γενιάς μετεωρολογικοί δορυφόροι είναι εφοδιασμένοι με πλείστα ηλεκτρονικά όργανα όχι μόνο αυτόματης ανάλυσης και καταγραφής φωτογραφιών αλλά και λήψης συγκέντρωσης και ανάλυσης εκπομπών γήινων αυτόματων μετεωρολογικών σταθμών που βρίσκονται σε απρόσιτες περιοχές (π.χ. ερήμους, θάλασσες, πολικές ζώνες, απρόσιτες κορφές οροσειρών κ.λπ) που περιέχουν αναγκαία φυσικά τοπικά μεγέθη όπως η θερμοκρασία, ατμοσφαιρική πίεση, υγρασία ατμόσφαιρας, ταχύτητα και φορά ανέμων κ.λπ. Έτσι επιτυγχάνεται συλλογή πλούσιου υλικού που μετά από ηλεκτρονική επεξεργασία, σε πολλές των περιπτώσεων οι δορυφόροι αυτοί να παραδίδουν (συντάσσουν) ακόμη και τον μετεωρολογικού χάρτη πρόβλεψης καιρού συγκεκριμένου τόπου και χρόνου.

·        Οι ευρωπαϊκοί μετεωρολογικοί δορυφόροι ως γνωστόν τοποθετούνται σε τροχιά με την προωθητική ισχύ (εκτόξευση) του γνωστού διαστημικού πυραύλου (πυραυλικού τύπου) Αριάν.

·        Με τις δορυφορικές παρατηρήσεις των παραπάνω μετεωρολογικών δορυφόρων διαμορφώνονται οι σύγχρονοι καθημερινοί μετωρολογικοί χάρτες ταχύτερα και σε συντομότερα αναδιαστήματα

 

 

 

 

 

 

 

ΒΙΒΛΙΟΓΡΑΦΙΑ

 

NASA Human Spaceflight - Shuttle: Κεντρική σελίδα της NASA για το Πρόγραμμα διαστημικών λεωφορείων

·        Εγκυκλοπαίδεια Υδρία (Εταιρία Ελληνικών Εκδόσεων Α.Ε.)

 

http://el.wikipedia.org/wiki

 

 


 [CTI1]a